An inverse problem for an elliptic equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overdetermined Problem for an Elliptic Equation

We consider the following overdetermined boundary value problem: ∆u+ λu+ μ = 0 in Ω, u = 0 on ∂Ω and ∂u/∂n = c on ∂Ω, where c 6= 0, λ and μ are real constants and Ω ⊂ R is a smooth bounded convex open set. We first show that it may happen that the problem has no solution. Then we study the existence of solutions for a wide class of domains. 2010 Mathematics Subject Classification: 35J05, 35R30.

متن کامل

Uniqueness for an Elliptic Inverse Problem

For the elliptic equation −∇ · (p(x)∇v) + λq(x)v = f, x ∈ Ω ⊂ R, the problem of determining when one or more of the coefficient functions p, q, and f are defined uniquely by a knowledge of one or more of the solution functions v = vp,q,f,λ is considered.

متن کامل

An Inverse Problem for the Telegraph Equation

This paper deals with the problem of state estimation for a hyperbolic equation in the presence of unknown, but bounded disturbances, on the basis of information from sensors with finite-dimensional outputs. The object of investigation is the hyperbolic telegraph equation with energy dissipation. Observability properties similar to those introduced earlier for parabolic systems ([8]) are checke...

متن کامل

An Inverse Problem for the Heat Equation

Let ut = uxx − q(x)u, 0 ≤ x ≤ 1, t > 0, u(0, t) = 0, u(1, t) = a(t), u(x, 0) = 0, where a(t) is a given function vanishing for t > T , a(t) 6≡ 0, ∫ T 0 a(t)dt < ∞. Suppose one measures the flux ux(0, t) := b0(t) for all t > 0. Does this information determine q(x) uniquely? Do the measurements of the flux ux(1, t) := b(t) give more information about q(x) than b0(t) does? The above questions are ...

متن کامل

Inverse Problem for an Inhomogeneous Schrödinger Equation * †

Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 2004

ISSN: 0034-5318

DOI: 10.2977/prims/1145475967